mono
/complexmono
Creates a TPS corresponding to a specific monomial
Syntax
m = mono([tpstype, ] monomialindex [, use=(descriptor|tps)])
# Static Descriptor resolution:
m = mono(TPS{Float64|ComplexF64, descriptor}, monomialindex)
# Dynamic Descriptor
m = mono(monomialindex [, use=(descriptor|tps)])
m = mono(TPS{Float64|ComplexF64 [, GTPSA.Dynamic]} monomialindex [, use=(descriptor|tps)])
Description
monomialindex
can be any of kind monomial indexing: by index, by order, and by sparse monomial. See the monomial indexing for more details on each.
Examples
julia> d15 = Descriptor(3, 15, 2, 15); # 3 vars, 2 params, all to order 15
julia> mono(1)
TPS64{GTPSA.Dynamic}: Descriptor(NV=3, MO=15, NP=2, PO=15) Coefficient Order Exponent 1.0000000000000000e+00 1 1 0 0 | 0 0
julia> mono(TPS64{d15}, 1)
TPS64{Descriptor(NV=3, MO=15, NP=2, PO=15)}: Coefficient Order Exponent 1.0000000000000000e+00 1 1 0 0 | 0 0
julia> mono(ComplexTPS64{d15}, param=1)
ComplexTPS64{Descriptor(NV=3, MO=15, NP=2, PO=15)}: Real Imag Order Exponent 1.0000000000000000e+00 0.0000000000000000e+00 1 0 0 0 | ⋯ 2 columns omitted
julia> mono(TPS64, [3,1,2], use=d15)
TPS64{GTPSA.Dynamic}: Descriptor(NV=3, MO=15, NP=2, PO=15) Coefficient Order Exponent 1.0000000000000000e+00 6 3 1 2 | 0 0
julia> mono(TPS64{d15}, (3,1,2,2,1))
TPS64{Descriptor(NV=3, MO=15, NP=2, PO=15)}: Coefficient Order Exponent 1.0000000000000000e+00 9 3 1 2 | 2 1
julia> mono([1=>3, 2=>1, 3=>3])
TPS64{GTPSA.Dynamic}: Descriptor(NV=3, MO=15, NP=2, PO=15) Coefficient Order Exponent 1.0000000000000000e+00 7 3 1 3 | 0 0
julia> mono((1=>3, 2=>1, 3=>2), params=(1=>2, 2=>1), use=d15)
TPS64{GTPSA.Dynamic}: Descriptor(NV=3, MO=15, NP=2, PO=15) Coefficient Order Exponent 1.0000000000000000e+00 9 3 1 2 | 2 1
Documentation
GTPSA.mono
— Functionmono([tpstype, ] monomialindex [, use=(descriptor|tps)])
Returns a TPS
of type tpstype
(which defaults to TPS{Float64,GTPSA.Dynamic}
) with the specified monomial set to 1. Any of the three monomial indexing schemes (by order, sparse monomial, or monomial index – see the Monomial Indexing section of the GTPSA manual for more details) may be used to specify the monomial to set to one. E.g. a call to this function is equivalent to doing t = (tpstype)(use=use); t[monomialindex] = 1
use
may only be specified if tpstype <: TPS{T where {T},<:GTPSA.Dynamic}
.
Examples: Variable/Parameter Index:
julia> d = Descriptor(3,10,2,10);
julia> mono(1)
TPS64{GTPSA.Dynamic}:
Coefficient Order Exponent
1.0000000000000000e+00 1 1 0 0 | 0 0
julia> mono(ComplexTPS64, 1)
ComplexTPS64{GTPSA.Dynamic}:
Real Imag Order Exponent
1.0000000000000000e+00 0.0000000000000000e+00 1 1 0 0 | 0 0
julia> mono(ComplexTPS64{d}, param=2)
ComplexTPS64{Descriptor(NV=3, MO=10, NP=2, PO=10)}:
Real Imag Order Exponent
1.0000000000000000e+00 0.0000000000000000e+00 1 0 0 0 | 0 1
Examples: Monomial Index-by-Order
julia> mono([1,2,3])
TPS64{GTPSA.Dynamic}:
Coefficient Order Exponent
1.0000000000000000e+00 6 1 2 3 | 0 0
julia> mono([0,0,3,2,1], use=d)
TPS64{GTPSA.Dynamic}:
Coefficient Order Exponent
1.0000000000000000e+00 6 0 0 3 | 2 1
julia> mono(TPS64{d}, [1,0,0,0,1])
TPS64{Descriptor(NV=3, MO=10, NP=2, PO=10)}:
Coefficient Order Exponent
1.0000000000000000e+00 2 1 0 0 | 0 1
Examples: Monomial Index-by-Sparse Monomial
julia> mono([1=>1])
TPS64{GTPSA.Dynamic}:
Coefficient Order Exponent
1.0000000000000000e+00 1 1 0 0 | 0 0
julia> mono([2=>1])
TPS64{GTPSA.Dynamic}:
Coefficient Order Exponent
1.0000000000000000e+00 1 0 1 0 | 0 0
julia> mono([1=>1], params=[2=>1], use=d)
TPS64{GTPSA.Dynamic}:
Coefficient Order Exponent
1.0000000000000000e+00 2 1 0 0 | 0 1